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ABSTRACT
JetBench is an Open Source OpenMP-based multicore bench-
mark application that was created to be used to analyse the
real time performance of a multicore platform. The appli-
cation is designed to be platform independent by avoiding
target specific libraries and hardware counters and timers.
JetBench uses jet engine parameters and thermodynamic
equations presented in the NASA’s EngineSim program, and
emulates the calculation of a jet engine’s performance. As a
benchmark, it is, therefore, an application benchmark rather
than a synthetic benchmark. This paper reports on the use
of JetBench to compare the efficiency of several concurrency
models when implemented on a shared memory multicore
platform. We compare Ada, C (used in conjunction with
Open Multi-Processing (OMP)), Java 8 using the Thread
class, Java 8 using Thread Pools, Java using OpenMP, the
Jamaica implementation of the Real-Time Specification for
Java (RTSJ) with Real-time Threads (compiled), and C#.
Our results show that Ada and C with OMP general per-
form slightly better than compiled RTSJ, and that all three
outperform the Java-based languages and C#.

1. INTRODUCTION
Benchmarks are computer programs that are designed to

simulate a particular type of workload on a component or
system. Their goal is to evaluate the performance of the
component (or system). The component (or system) may
be hardware based (for example, an instruction set of a pro-
cessor) or software based (for example, a compiler or an
operating system). Benchmarks are usually classified into
two types: application benchmarks and synthetic bench-
marks. Application benchmarks are “real-world” programs
whereas synthetic benchmarks are contrived program de-
signed to generate a particular workload or pattern of us-
age. Arguably application benchmarks give a much better
indication of real-world performance on a given system than
synthetic benchmarks. For real-time benchmarks, however,
it is often difficult to acquire good application benchmarks
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that test real-time performance.
The JetBench [16] benchmark is an application bench-

mark written in C (and used in conjunction with OpenMP [9])
that contains a set of real-time jet engine thermodynamic
calculations. Its goal is to evaluate the performance of shared
memory multiprocessor architectures. Here we use JetBench
in a slightly different context. Our goal is to provide im-
plementations of JetBench in various languages in order to
compare how efficiently each language’s concurrency model
can be implemented. We consider the following languages,
where necessary used in conjunction with middleware:

• Ada,

• C used in conjunction with OMP,

• Java 8 using the Thread class,

• Java 8 using Thread Pools,

• Java using Open MP,

• Jamaica RTSJ with Real-time Threads (compiled) and

• C#.

The languages have been chosen as they all support the
shared memory model of computation. We use a mixture
of languages that have been used in the real-time embedded
systems domain and those that have not.

The paper is structured as follows. In Section 2 we de-
scribe the details of JetBench. Although it is an application
benchmark, the benchmark is contrived for multiprocessor
execution. Essentially, the set of calculations are indepen-
dent from one and other and executed in parallel to obtain
an overall speedup. We show that the internal structure of
the benchmark is not coherent as it contains many needless
accesses to shared variables. We propose a restructuring to
make the code more easy to understand and more coherent
from a multi-threaded viewpoint. In Section 3, we present
the code for the RTSJ version of JetBench as an example
implementation. Then, in Sections 4 and 5, we show the
results of our language comparisons. In Section 6 we briefly
review related work. Conclusions are given in Section 7.

2. JETBENCH
JetBench [16] is an application benchmark written in C

that is used in conjunction with OpenMP [9] for real time jet
engine thermodynamic calculations. The thermodynamic
calculations are inspired by a sequential application named
NASA EngineSim [14]. JetBench proposes a parallel way to
perform the calculations based on different input data. Jet-
Bench employs OpenMP to carry out the parallel compu-
tation instead of using target specific libraries or hardware



counters. This approach allows JetBench to be portable
across various architectures and operating systems.

2.1 Goals and structure
JetBench has two main goals. The first is to propose a

benchmark that can execute in parallel on multiprocessor
platforms. The second goal is to provide a tool to analyze
real time performance of a real-time operating system, in-
cluding thread scheduling, execution efficiency and memory
management capabilities etc.

JetBench’s execution can be divided into 3 steps:

1. initialization,

2. create threads with the help of OpenMP and carry out
the calculation in parallel, and

3. print out results.

In the first step, JetBench initializes parameters and opens
a file that contains all the input data needed to be processed
in the second step. The input data consists of the values of
three sensors: altitude, air speed, and throttle. A fourth in-
put value gives a contrived deadline that represents a time
constraint on the calculation of the engine’s performance fig-
ures. In our experiments, the deadline has been fixed at a
value of 0.05 seconds. This has been chosen to be approxi-
mately 2-3 times the value of the execution time of the raw
C code calculations. Hence, the required utilization is less
than 50%.

In the second step, JetBench creates multiple threads (one
for each processing core in the system) and starts these
threads. All the threads perform the same operations. Each
thread first calculates π using a loop, measuring the time
taken. After this, each thread reads a set of input data from
the file opened in the first step. Then, each thread pro-
cesses its input data, carries out thermodynamic, geometry
and engine performance calculations, and prints out the per-
formance data. The times taken to perform the calculations
are recorded. When all the data in the file is processed, the
threads terminate. After all the threads have terminated,
the benchmark enters into the last step of its execution.
During the last step, the results are collected from the sec-
ond step and are printed. An overview of the execution
structure is shown in Figure 1.

Figure 1: The overview of benchmark structure

Although the benchmark works and produces results, it is
hard to understand its current structure. This is because the

data is not accessed in a coherent manner for the following
reasons

• There are needless accesses to shared variables and
never-used variables. The set of input data use in
the calculations is independent of each other. How-
ever, operations in all the running threads share the
same set of variables. For example, all threads use
shared variables to store input data which is read from
file. As the threads run in parallel, these variables are
overwritten and used in a random order during the
thermodynamic, geometry, and performance calcula-
tions. Massive accessing to shared variables (which
should not be shared) in OMP’s #pragma parallel di-
rectives makes the code hard to read and understand.
The functional results are, consequently, incorrect. Al-
though this is not important for the benchmark to pro-
duce useful performance results, it nevertheless adds to
the confusion.

• Race conditions – JetBench reads input data from file
in parallel without any mutual exclusion controls. Fur-
thermore, the measurement of execution times in each
thread also use shared variables and are not protected
from race conditions.

• There is misleading output information. Firstly the
response time of each thread is presented as execu-
tion time. This is only the case when the threads are
not preempted by any operating system activity on
the processor. Secondly, in order to investigate overall
speedup obtained in parallel execution, the total re-
sponse time should be the benchmark’s response time
rather than the sum of threads’ response times, as this
includes the overheads of thread creation and termina-
tion.

2.2 The revised structure of JetBench
The aims of restructuring is to make the code easier to

understand and more coherent in its multi-threading. In the
new structure, unnecessary shared variables are moved to
local variables, and race conditions are eliminated through
mutually exclusive methods. Additionally, the main code of
the benchmark is restructured to be more readable. Finally,
more meaningful results are output.

In the first step of restructuring, all unused variables are
removed along with duplicate operations. The parameters
that impact the benchmark’s behavior (for example, the
number of threads) are moved into a configuration class.
All the needlessly shared variables are moved to thread lo-
cal variables, and the truly shared variables are accessed via
critical sections.

In the second step, the input data is read into memory be-
fore calculation starts and stored in an input array. During
calculation, each thread reads input data at specific posi-
tions of the input array. After calculation, the results will
be written into an output array. This ensures that input
and output times are not included in the response times

In the last step, the benchmark’s response time, which
is measured by the new method, will be printed out, along
with an indication of the number of deadlines that have been
missed.

The overall revised structure is illustrated in Figure 2 and
is thus
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Figure 2: The revised benchmark structure

• Initialize the parameters according to the configuration
data and initialize the input data array,

• create threads to carry out parallel processing of the
in-memory input data, and

• print out the result after all threads finish their jobs.

3. JETBENCH IN THE REAL-TIME SPEC-
IFICATION FOR JAVA

This section shows how the JetBench program has been
instantiated for the Real-Time Specification of Java.

In order to remove any possible garbage collection delays,
the main program creates a real-time thread that then cre-
ates the worker threads as no-heap real-time threads of de-
fault priority. The overall response time for the benchmark
is calculated within this first thread to exclude file input
and output but to include worker thread creation, process-
ing and termination. This is illustrated with the abridged
code given below.

1 class starRTThread extends RealtimeThread {

2 private static double BenchmarkStartTime ,

3 BenchmarEndTime;

4 // arrays , store input and output data

5 public static double [][] inputArray;

6 public static double [][] outputArray;

7 public static int LineCount =0;

8

9 public void run() {

10 final NoHeapRealtimeThread threads []=new

11 NoHeapRealtimeThread[NUM_THREADS ];

12 ImmortalMemory.instance (). enter(

13 new Runnable () {

14 public void run() {

15 InitializeArray (); // read in data

16 BenchmarkStartTime=System.nanoTime ();

17 /** create threads */

18 for(int i=0;i<NUM_THREADS;i++){

19 threads[i]=new WorkingRTThread(i);

20 threads[i].start ();

21 }

22 // join thread and print final result

23 for(int i=0;i<NUM_THREADS;i++){

24 try {

25 threads[i].join ();

26 } catch (InterruptedException e) {

27 e.printStackTrace (); }

28 }

29 BenchmarEndTime=System.nanoTime ();

30 printResult ();

31 }

32 });

33 }

34

35 public static void InitializeArray (){...}

36 public static void printResult (){...}

37 }

The main calculations are performed in the no-heap real-
time worker threads. Their structure is given below.

1 public class WorkingRTThread

2 extends NoHeapRealtimeThread {

3
4 // various global constant variables , e.g.

5 public static int engine =

6 configuration_data.engine;

7 private static final double g0 = 32.2;

8 private static final double gama = 1.4;

9
10 // local variables for calculating , e.g.

11 double altd ,u0d;

12 double throtl;

13 double [] trat = new double [20];

14 double [] tt = new double [20];

15 double [] prat = new double [20];

16 double [] pt = new double [20];

17 double [] eta = new double [20];

18 double [] gam = new double [20];

19 double [] cp = new double [20];

20
21 public WorkingRTThread(int id){

22 super(null , ImmortalMemory.instance ());

23 this.id=id;

24 InitializeParam ();

25 }

26

27 @Override

28 public void run() {

29

30 // variables for calculating time related ,

31 // e.g.deadline etc for each thread

32 double StartTime = 0, EndTime = 0,

33 ExecTime = 0;

34 double used = 0;

35

36 // variables for pi calculation

37 final long num_steps = 1000000;

38 double step = 1.0 / (double) num_steps;

39 int i = 0;

40 double x, pi, sum;

41 // variables for input data

42 double a,b,c,d;



43

44 while (moreData) {

45 /** Pi calculation */

46 sum=0;

47 StartPiTime= System.nanoTime ();

48 for (i = 0; i < num_steps; i++) {

49 x = (i + 0.5) * step;

50 sum += 4.0 / (1.0 + x * x);

51 }

52 pi = sum * step;

53
54 // read input data

55 // Speed Altitude and Throttle

56 int index=CurrentPoint -1;

57 a=starRTThread.inputArray[index ][0];

58 b=starRTThread.inputArray[index ][1];

59 c=starRTThread.inputArray[index ][2];

60 d=starRTThread.inputArray[index ][3];

61
62 /** START CALCULATIONS **/

63 deduceInputs ();

64 getThermo ();

65 getGeo ();

66 calcPerf ();

67 EndTime = System.nanoTime ();

68

69 ExecTime = (EndTime - StartTime )/

70 1000000000;

71 // convert to seconds

72 usedTime = ExecTime - d ;

73 /** save RESULTS **/

74 }// end of while

75 }

76

77 private void InitializeParam () {..}

78 public void deduceInputs () {...}

79 public void getThermo () {...}

80 public void calcPerf () {...}

81 public void getGeo () { }

82 }

The total number of lines of code in the RTSJ version of
the benchmark is 712, and the mean McCabe Cyclomatic
Complexity of the class methods is 3.118 and the maximum
is 13.

4. RESULTS
The restructured JetBench benchmark has been coded in

each of the languages under test. The programs have been
tested and each produce the same functional results. In
this section we present the results of the experiments that
determine the performance of the benchmark in each of the
languages. We consider the following:

1. The mean total number of deadlines missed during an
experiment in each language – Although the deadline
is a contrived value, it is a useful measure to show the
difference is both the quality of sequential code gener-
ated and the efficacy of the scheduling. Here the dead-
line is measured from the moment that a task/thread
starts a calculation rather than some notional absolute
start time (that is, we treat the tasks/threads as spo-
radic tasks that are released when work is allocated to
them).

2. The response time of the benchmark – This is the time

taken to complete all of the required calculation minus
the time taken to start the program and read in the
sensor data from the input file.

3. Speedup – This is the relative speedup of the bench-
mark as the number of allocated cores increases. Each
language’s value is normalized with its single proces-
sor value being set to 1. It shows the efficiency of the
languages support for multiprocessor execution.

The experiments were performed on an Intel Core i7-
2630QM Processor, 4 cores with hyper-threading 2 GHz
processor (giving 8 processing cores) running Linux version
3.13.0-29-generic X86 64. The logical processors were se-
lected using the Linux “taskset” shell command.

An experiment consists of running the benchmark in one
of the languages 30 times. The number of cores is then varied
and the experiment is run again. Hence the benchmark was
executed 30 time in each language on 1, 2, 4, 6 and 8 cores.
Hence in total there are 1015 data points. The following
should be noted.

• For the one processing core experiments, processor 1
was used, i.e. “taskset -c 1 ”.

• For the two processing core experiments, processors
1,3 were used, i.e. “taskset -c 1,3 ”. This ensured that
the two logical processors were on separate physical
cores

• For the four processing core experiments, processors
1,3,5,7 were used, i.e. “taskset -c 1,3,5,7 ”. This en-
sured that the four logical processors were on physical
separate cores.

• For the six and eight processing core experiments, the
other processors were utilized. As these will share
hardware components with the other logical proces-
sors, this may cause interference and reduce the po-
tential for further speedup.

For the languages we used the following implementations.

• For Ada, we use the AdaCore GNAT GPL 2014 com-
piler version 4.6 and compiled with the -O2 optimiza-
tion flag.

• For C used in conjunction with OMP, we use gcc 4.8.2
(compiled with the -O2 optimization flag) and OpenMP
3.1

• For Java 8 using the Thread class, we use Java version
1.8.0 05 (build 1.8.0 05-b13).

• For Java 8 using Thread Pools, we use Java version
1.8.0 05 (build 1.8.0 05-b13).

• For Java using Open MP, we use Java version 1.8.0 05
with jomp1.0b.

• For RTSJ with Real-time Threads (compiled with the -
O2 optimization flag), we use the aicas Jamaica Builder
version 6.2 Release 4 (build 8016).

• For C#, we use the Mono JIT compiler version 3.2.8.



Figure 3 shows the mean number of deadline misses that
occurred for each experiment. As can be seen, there are a
few deadlines missed with Java and many with Java JOMP.

Figure 4 shows the response times of the experiments. The
error margins show the variation at the 95% level. Finally,
Figure 5 shows how each language performs in terms of the
benchmarks speed-up when more cores are added.

CORES Ada C+OpenMP Java Java ForkJoin Java JOMP RTSJ C#

1 Core 0 0 0 0 1 0 0
2 Cores 0 0 0 0 1 0 0
4 Cores 0 0 0 0 6 0 0
6 Cores 0 0 1 0 9 0 0
8 Cores 0 0 2 1 13 0 0

Mean Number of Deadline Misses per Experiment

Figure 3: Total number of deadline misses in each
language
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4.1 Detailed analysis of results
Analysis of variance (ANOVA) is a general statistical tech-

nique for separating the total variation in a set of measure-
ments into the variation due to measurement noise and the

variation due to real differences among the alternatives be-
ing compared [12]. The one-way ANOVA tests the null hy-
pothesis that samples in two or more groups are drawn from
populations with the same mean values.

The two-way analysis of variance is an extension of the
one-way ANOVA that examines the influence of two differ-
ent categorical independent variables on one dependent vari-
able. It determines both the main effect of contributions of
each independent variable and if there is an interaction effect
between them [21]. The analysis computes an F value which
describes this relationship. It is an appropriate technique for
the analysis of the measurements of execution times [12].

The goals of applying this analysis to our results is to
prove that both programming languages and the number of
core has an impact on the benchmark’s response times, and
also that there is significant interaction between them, i.e.
different programming languages have different efficiency im-
pacts in multiprocessor parallel processing.

The null hypothesis is made that both factors (program-
ming languages and number of cores) have no effect on the
benchmark’s response times, i.e. its efficiency. The number
of times each experiment is run is 30 and the alpha value is
0.05 (a statistical significance level of 95%). After carrying
out two way ANOVA analysis (using MATLAB), the results
are presented in Table 1 – where SS is the Sum of Squares
due to each source, df is the degrees of freedom associated
with each source, MS is the Mean Squares (MS), which is
the ratio SS/df, and F is the ratio of the variance calculated
among the means to the variance within the samples. The
p value is the computed probability that the null hypothesis
holds. If any p value is near zero, this casts doubt on the
associated null hypothesis.

Source SS df MS F P-value

Cores 33.46 4 8.37 41650.41 < 0.01
Language 12.75 6 2.12 10576.99 < 0.01

Interaction 4.40 24 0.18 914.45 < 0.01

Total 50.82 1049

Table 1: The two way ANOVA table

Matlab indicates that the probabilities are very close to
0. To give an indication of what the values of F would be
for the 0.01 probability that the null hypothesis holds, the
following F values are taken from the Tables of F Probabil-
ity Distribution for given levels of statistically significance
(e.g. [10]).

• F(cores)(4,1015) = 3.480

• F(languages)(6,1015) = 2.956

• F(interaction)(24,1015) = 1.791

As can been sen, FCore and FLanguage are much larger
than the maximum value in the F distribution tables indi-
cates that hypotheses is rejected, i.e. not only programming
languages, but also core/thread number have effect on effi-
ciency. FInteraction is much larger than the maximum value
in the F distribution table, indicating that there is interac-
tion effect between them, i.e. programming languages have
different efficiency in multiprocessor parallel processing.



4.2 Tukey HSD (Honest Significant Difference)
Analysis

The ANOVA analysis allows us to have confidence that
(with our implementations of the benchmark) the response
times are significantly different depending on the language
used. This may be because one language has a very poor
implementation. In order to obtain a more detailed analysis
we use a Tukey HSD [20]. This is used in conjunction with an
ANOVA to find means where there are significant differences
between the languages. Tukey’s test compares the means of
every language to the means of every other language and
identifies any difference between two means that is greater
than the expected standard error.

In the following, we use A >> B to indicate that A and
B have means that significantly different, and A is larger
than B. We use C > D to indicate that C and D don’t have
means that are significantly different, and C is larger than
D. All the figures presented in this section come from HSD
analysis performed by Matlab.

Figure 6: HSD analysis for response time means: 1
and 2 cores

Tukey’s HSD Analysis of Response Time
Figure 6 shows the HSD analysis of the response times for
1 and 2 cores. It shows that, Ada and C+OpenMP do not
have means that are significantly different from each other,
but they are significantly different from the other languages.

Figure 7: HSD analysis for response time means: 4
and 8 cores

The difference between Java and Java with ForkJoin is also
not significant. Hence:

JavaJOMP >> C# >> JavaForkJoin > Java >>

RTSJ >> C +OpenMP > Ada

For two cores, the relationship is similar with some minor
changes. In particular, RTSJ closes the gap on C+OpenMP
and Ada.

JavaJOMP >> C# >> Java > JavaForkJoin >>

RTSJ > Ada > C +OpenMP

Figure 7 also shows similar diagrams for 4 and 8 cores. We
see here that C# seems to improve its performance when
compared to the Java-based languages.

Tukey’s HSD Analysis of Speed-Up
Figure 8 shows the results of the speed-up analysis for two
and four cores. It shows that the RTSJ implementations has
the greatest speedup.

For two cores:

RTSJ > C +OpenMP > C# > Ada > JavaForkJoin >

Java >> JavaJOMP



For 4 cores

C +OpenMP > C# > RTSJ > Ada >> Java >

JavaForkJoin >> JavaJOMP

But note that C+OpenMP >> Ada
For 6 cores, we have

C# >> Java >> JavaForkJoin > RTSJ >>

C +OpenMP > Ada >> JavaJOMP

And for 8:

C# >> Java >> JavaForkJoin >> RTSJ >

C +OpenMP > Ada >> JavaJOMP

Figure 8: HSD analysis of speed-up means: 2 and 4
cores

Figure 9 shows similar diagrams for 4 and 8 cores. Here
we see that C# and Java now show greater speedup.

4.3 Discussion
It is always difficult to draw general conclusions from a

limited set of experiments on a single benchmark. That is
why we have used well-known statistical analysis techniques
to show the significance of our results. Of course, much
depends on us not introducing any inefficiencies when coding
the benchmarks in our languages. The core parts of the
benchmarks (the calculations) are essentially the same for

Figure 9: HSD analysis of speed-up means: 6 and 8
cores

the “C-based” languages as they all accept C syntax. Only
the Ada syntax is different in this respect.

The implementation we have used for Java and C# are
JIT-based, and as a consequence we would expect their over-
all performances to be less that the fully-compiled imple-
mentations of Ada, RTSJ and C. This is confirmed by the
results of benchmark’s response-times, which shows that C
with OMP and Ada have the best performance followed by
the RTSJ. The similarity between the Ada and C results is
probably accounted for by the fact that they both use the gcc
backends and optimizers. Indeed, repeating the experiments
without the optimization degrades these languages’ perfor-
mances significantly. We also repeated the experiments with
the JIT-based implementations allowing a warm-up phase
before measurements were started. This resulted in some
improvement in response times (and speed-ups) but they
were still significantly poorer than the compiled languages.

The speed-up experiments remove the advantages of full
compilation by normalizing the times to the single processor
times. Our, perhaps naive, expectation is that if the lan-
guage maps its implementation of tasks/threads to Linux
threads then most of the speed-up should be similar, as
Linux is handling the scheduling. Furthermore, given that
our test machine supports hyperthreading, we expect the
speedup to decrease when we move from four to six and



eight cores. What we see is that the languages that are
more efficiently implemented have less speed-up when going
to six and eight cores than those languages that have less
efficient implementations. Perhaps this is the impact of hy-
perthreading. The efficiently implemented languages make
fuller use of the architecture components shared between the
physical cores (pipeline etc) so that hyperthreading delivers
less significant performance gains.

The exception is Java with JOMP, which performs badly
overall.

5. EXPERIMENTS WITH SIMICS
Simics (see www.windriver.com/simics) is a full-system

simulator. It allows virtual platforms to be created that
run the same binary software that would run on the actual
physical hardware. We have replicated our experiments for
1 to 4 cores on the simulator and have achieved very sim-
ilar results. The result profiles are the same although the
detailed measurements are slightly different.

We have used Simics to simulate a 128 core (the maxi-
mum supported by Simics) Linux system. The simulated
hardware supported by Simics is a multicore system based
on the Pentium 4e without hyperthreading (our version of
Simics does not support the most recent Intel processors).
We also increased the number of sensor readings in the data
input file to reflect the increased number of processors. Here
we report on an experiment involving just Ada, C (with
OpenMP) and compiled RTSJ. In order to focus on the sup-
port for parallel processing, we have extracted out the main
computational components and written them in C. Both the
Ada and the C (with OpenMP) now use this common code.
The RTSJ version uses this code as well – as it is also valid
Java1.
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Figure 10: Simics benchmark response times

The results show that Ada and C have similar perfor-
mance up to 8 cores, beyond 32 cores, the C version perfor-
mance begins to degrade. For all languages, the performance
with 128 cores is disappointing. The reason for this is that
128 tasks (threads) are created and this introduces added
overheads. More importantly, as the size of the input is
only 128 lines, each thread only processes one set of sensor

1We did try to use JNI to allow access to the common C
code but the cost of the JNI calls significantly degraded the
overall performance.
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Figure 11: Simics benchmark speed-up

readings. When we increased the number of sensor reading
the performance continued to improve at 128 cores.

6. RELATED WORK
In their most general sense, benchmarks are designed to

simulate a particular type of workload on a component or
system. Their goal is to evaluate the performance of the
component (or system). Benchmarks are broadly classi-
fied into two types: application benchmarks and synthetic
benchmarks, although other groupings can be specified – see
http://en.wikipedia.org/wiki/Benchmark (computing).

Traditionally, benchmarking is one of the most important
methods for evaluating the performance of processor designs.
For example, Whetstone [19] and Dhrystone [18] are both
synthetic benchmarks whose goal is to evaluate the perfor-
mance of a CPU’s internal workings. More recently, their use
has been extended into multiprocessor system design. For
example, the NAS Parallel Benchmarks are a widely used
set of programs that were designed to evaluate the perfor-
mance of supercomputers [1]. These benchmarks consist of
five “parallel kernel” benchmarks and three “simulated ap-
plication” benchmarks. A kernel benchmark being a core
piece of code normally abstracted from an actual program,
for example the Livermore loops [13]. Whilst the focus of
these benchmarks is on performance in terms of speed, other
benchmarks address energy efficiency, e.g., JouleSort [17].

PARSEC [5, 6, 4] is an application benchmark suite for
chip-multiprocessors that focuses on emerging applications,
including financial analysis, computer vision, data storage,
animation, and data mining. While the SPLASH-2 [22, 3]
benchmark suite is mainly aimed at the High-Performance
Computing domain.

In the real-time community, there are two notable applica-
tion benchmark. The PapaBench benchmark [15] is written
in C and provides a free implementation of an autopilot for
unmanned aerial vehicles. A Java version (jPapaBench) is
also available for plain Java, the Real-Time Specification for
Java, and Safety-Critical Java (see https://code.google.com/-
p/jpapabench/). The CDx (Collision Detector) benchmark
suite [11] is a Java open source application benchmark suite
that targets different hard and soft real-time virtual ma-
chines.



In contrast to the above work, the focus of this paper
is on evaluating the efficiency of a language’s concurrency
model. There has been some work on evaluating languages
performance [8, 2, 7]. Notably, Berlin et al [2] have eval-
uated the impact of programming language features on the
performance of parallel applications on cluster architectures.
They consider Pthreads, Open MP, MPI, UPC and Global
Arrays and evaluate portability and programmability along
with performance. In contrast to our work, their focus is on
comparing the shared memory, message passing and a hybrid
approach. Their conclusion is that threads-based paradigms
provide best performance on SMPs while paradigms with ex-
plicit communication achieve best performance in clusters.

7. CONCLUSIONS
It is now taken for granted that real-time and embedded

platforms will be multi-core and that programs will need
to be multithreaded if they wish to exploit the extra per-
formance available to them. However, there are a plethora
of programming language that can be used, all of which
now allow programs to be executed in parallel. In this pa-
per we have considered a few languages, some of which are
important to the embedded and real-time community. We
have set out to determine how well each language supports
parallel processing. We have chosen to do this with an ap-
plication benchmark rather than a synthetic benchmark as
we believe that application benchmarks give a more realis-
tic guide to the performance improvement that practitioners
can expect. Unfortunately, application benchmarks that are
appropriate for multiprocessor real-time systems are few and
far between. We selected JetBench primarily because it is
open source and claims to be for real-time.

On examining the original JetBench program, we found
that its structure was very confusing and data was shared
even when there was no need to do so. We, therefore decided
to restructure the benchmark to make its structure more co-
herent. The benchmark was then rewritten in the languages
under test. The final version of these implementations are
freely available so that others can repeat our experiments.

We are wary of making wide-sweeping conclusions based
on the limited experiments we have done. Our statistical
analysis gives us confidence that our results are statistically
significant. Overall we expect that the quality of the gcc
backends is the dominating factor that explains why C with
OMP and Ada have the best overall performance. By ex-
tracting out the main sequential calculations into common
C code, we are better able to focus on the multiprocessor
support. This showed that the overheads of task/thread
creation became more significant as the number of cores in-
creased, and that to continue to increase speedup it is imper-
ative to ensure that each task/thread processes more than
one set of sensor readings.

Source Code
The source code is available at https://sourceforge.net/proj-
ects/mpbenchmark.
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